

(Stuttgart 21st – 25th October)

Session 2: Improving current station performance (Local ties).

<u>Title</u>: **InSAR Corner Cube at GRSM.**

Mourad Aimar ¹, Clément Courde ¹, Xavier Collilieux ^{2,3}, Bénédicte Fruneau ⁴, Guillaume Schmidt ³, Isabelle Delprat ³, Damien Pesce ⁵, Fabien Bergerault ⁵, Pierre Cumerlato ⁵, Guy Wöppelmann ⁶.

¹ UCA, CNRS, OCA, IRD, 06460 Caussols, France.
 ² Université de Paris, IPGP, CNRS, IGN, F-75005 Paris, France.
 ³ ENSG-Géomatique, IGN, F-77455 Marne-la-Vallée, France.
 ⁴ LaSTIG, Université Paris-Est, UPEM, IGN, Marne-la-Vallée, France.
 ⁵ INIGF, Saint-Mandé, France.
 ⁶ Laboratoire L.E.S., UMR7266 – Univ La Rochelle and CNRS, La Rochelle, France.

1 – Context : Geodetic observatories.

A geodetic observatory consists of four technics :

VLBI
(Very Long
Baseline
Interferometry)

Doris Receiving-Antenna

Transmitting beacon

DORIS
(Doppler Orbitography by Radiopositioning Integrated on Satellite)

GNSS
(Global Navigation Satellite Service)

SLR / LLR (Satellite/Lunar Laser Ranging)

1 – Context : Geodetic observatories.

	Product	VLBI	SLR	GNSS	DORIS
Earth rotation	length of day	XXX	X	XXX	
	movement of pole	XXX	XX	XXX	X
	nutation	XXX		X	
	UT1	XXX			
Terrestrial frame	coverage homogeneity	Χ	X	XX	XXX
	center of mass		XXX	X	X
	center of figure	XX			
	tectonic movements	XXX	XX	XXX	XXX
	densification		X	XXX	XX
Celestrial frame		XXX			
Gravity field	high wavelengths		XXX	XX	X
	(statistical)				
	short wavelengths		XX	XXX	XX
	(statistical)				
	temporal variations		XX	X	

2 - Calern's multitechnical geodetic observatory:

Co-location site which host three different spatial geodesy technics:

- → SLR/LLR station (MéO);
- → 2 GNSS receivers : GRAC and GRAS ;
- → DORIS beacon : permanent station since september 2018 ;

MéO

GRAC

GRAS

DORIS Beacon

2 - Calern's multitechnical geodetic observatory:

- → Located in south of France, the site was inaugurated in 1974;
- → Calcerous plate of 20 km² in the Grasse hinterland :
 - Altitude: 1270m (longitude 6,9230°E; latitude 43,750° N);
 - Good compromise between accessibility (20 km of Grasse) and astronomical quality;

Various arguments led us to install an InSAR Corner Cube :

- → <u>Local ties</u>: 1x/year, IGN (France) carry out the local ties in our colocation site. But, if there are deformation of soils? An Insar CC allows to monitor the local stability and ground displascement;
- → <u>Seasonal hydraulic load</u>: InSAR method demonstrate its very good hability to measure vertical effects (8-9 mm North and Est component) [1]. With an InSAR CC, we can reach a better accuracy;
- → <u>Tide gauges</u>: an InSAR CC can improve the measure for a tide gauge near from the coast and who can't be equipped with a GNSS receiver [2];
- → Global Geodetic Observing System (GGOS) : millimetric accuracy, and stability better than 0,1mm/year ;
- [1] : Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference station, France (A. Memin and al, EGU, 2017);
- [2] : Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities (P. Bonnefond and al, Remote Sensing, 2018);

4 - Advantages of a Corner Cube (CC):

- → CC is a passive instrument (doesn't need any energy);
- → ESA provides freely SAR images from Sentinel 1A & 1B (Copernicus program);
- → SAR images acquired day and night, at all weather (C-band);
- → Monitoring the local stability, and ground displacement in our co-location site;
- → Monitoring the seasonnal hydraulic load in our site, with a better accuracy;

A corner reflector represents an identifiable physical point scatter, exhibiting a strong signal in radar images with a stable phase through time, allowing a good precision of displacement measurement.

5 - Design of the Corner Cube:

- → To measure displacement < 0,5mm in C-band : CR side length = 1,5m (hypotenuse side = 2,12m) [3];
- → To resist to the wind up to 150km/h: thickness = 8mm;
- → To maximize the signal backscaterred :
 - Flatness default (plate) < 0,75mm;</p>
 - Perpendicularity default (plates between them) < 2mm,</p>
- → Plate materiel: aluminium, powdercoated (grey color);
- → Orientable in azimut and elevation;
- → Fixed on a 1m x 1m concrete slab (totally hidden by the CC to prevent additional reflection);

6 – <u>Sentinel 1A et 1B</u>:

- → Calern site is visible by S1A and S1B from 4 distinct relative orbits :
 - 2 ascending (88, 161) and 2 descending (66, 139);
 - With a time revisit of 6 days;
 - Provides 5 images for S1A, and 4 images for S1B;

https://scihub.copernicus.eu/dhus/#/home

7 – Site selection and validation:

The choice of the site, different constraints must be followed [4]:

- → Clear sky visibility toward East and West;
- → No additionnal multipath for GNSS stations, or DORIS station;
- → Low radar backscatter signal prior the installation;

After a test phase (summer 2018) in differente locations, regarding the different Sentinel-1 orbits, we have choose the one which is close to the CATS stations:

- → Located at 100m from the closest GNSS station;
- → 70m from the DORIS station;

^{[4] :} Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion (Parker and al, Sensors 2017);

7 – Site selection and validation:

Map of Calern geodetic observatory and it geodetic benchmarks.

7 - Site selection and validation:

SCR before/after the installation of the CC.

7 – Site selection and validation:

- → These results validate our choice of location for the CC (close to the CATS stations);
- → We decided to keep the CC toward the relative orbit 88. Its small incidence angle (35°) makes InSAR more sensitive to the vertical component of the deformation;
- → The CC was defenitively anchored on its concrete slab, the 3rd December 2018;

8 – Impact on GNSS and DORIS stations:

There is no multipath impact on GNSS permanent stations (a), and the DORIS permanent station (a);

Conclusion:

- → We have installed a permanent CC, new geodetic instrument, at the Calern Geodetic Observatory;
- → No multipath impact on GNSS and DORIS stations;
- → The SCR > 27dB → theoritical measurement precision of 0,1 mm;
- → It will be surveyed regularly to monitor its stability;
- → The CR designed to be versatil: it can be oriented toward differents satellites orbits;

Acknowledgment:

- → PN GRAM, BQR OCA, BQR GEOAZUR wich funded the CR;
- → S2M (OCA) for the design, the manufacture, and the implementation;

Collilieux X., C. Courde, B. Fruneau, M. Aimar, G. Schmidt, I. Delprat, D. Pesce, F. Bergerault, P. Cumerlato and G. Wöppelmann (2019) Validation of a Corner Reflector installation at OCA multi-technique geodetic Observatory, Journal of Applied Geodesy, submitted.